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Ultrasonic Attenuation in Superconductors for ql < 1 
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A derivation is given for the attenuation of both transverse and longitudinal ultrasonic waves in the 
superconducting state for the case when the product of the ultrasonic wave vector times the electron mean 
free path is smaller than one. It is assumed that the effect of electromagnetic fields is negligible in this fre
quency range. For transverse waves it is found that the ratio of the ultrasonic attenuation coefficient in 
the superconducting state and the normal state is equal to twice the Fermi function of the temperature-
dependent superconducting energy gap, in agreement with experimental results obtained by Levy, Kagiwada, 
and Rudnick. The same result is obtained for longitudinal waves. 

INTRODUCTION 

FOR large values of ql, ql>l, where q=ultrasonic 
wave vector and I— electron mean free path, ultra

sonic attenuation of transverse waves experiences a 
sharp drop when the temperature is lowered slightly 
below Tc, the transition temperature of the super
conductor.1 Usually, the magnitude of this drop is not 
equal to the total attenuation due to electron-phonon 
interaction in the normal state, the difference or residual 
attenuation gradually decreases to zero as the tempera
ture is lowered below TG. Morse1 and Tsuneto2 attribute 
the sharp drop to the fact that the onset of the Meissner 
effect screens the transverse magnetic fields proposed 
by Pippard3 in his derivation of ultrasonic attenuation 
of transverse waves in the normal state. Morse and 
Claiborne4 believe that the residual attenuation is pro
duced by a collision drag interaction, that is, the as
sumption that scattering produces a distribution which 
is in equilibrium with the local ion motions accom
panying the wave. 

Recent experiments5 on ultrasonic attenuation of 
shear waves in the superconducting state when #/<!, 
indicate that the ratio of the attenuation coefficient in 
the superconducting state and normal state, as/an, does 
not experience the sharp drop that is observed when 
ql> 1. Moreover, as/an appears to be a similar function 
of the reduced temperature as is found experimentally 
for longitudinal waves (see Fig. 1). 

This paper will concern itself mainly with ultrasonic 
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fur kalorische Apparate und Kaltetechnik, Swiss Federal Institute 
of Technology, Zurich, Switzerland. 

1 See, for instance, R. W. Morse, Progress in Cryogenics (Hey-
wood and Company Ltd., London, 1959), Vol. I. 

2 T . Tsuneto, Phys. Rev. 121, 402 (1961). 
3 A. B. Pippard, Phil. Mag. 46, 1104 (1955). Pippard assumes 

that the lattice vibrations produced by ultrasonic waves deform 
the Fermi surface by setting up electric fields parallel to the propa
gation direction. These electric fields may be produced, in the 
case of longitudinal waves, by the fact that the small density 
changes of the electrons and ions are not in phase and thus space 
charges are produced. In the case of transverse waves, the elec
trons do not follow the transverse lattice motion in phase, thus an 
alternating magnetic field will be set up, which produces by in
duction an electric field in the direction of motion of the lattice. 

4 R. W. Morse, IBM J. Res. Dev. 6, 58 (1962). 
6 M. Levy, R. Kagiwada, and I. Rudnick, in Proceedings of the 

Eighth International Congress on Low Temperature Physics 
(Butterworth and Co., Ltd., London, 1962). 

attenuation in the superconducting state for transverse 
and longitudinal waves when ql<l. It is proposed that 
for transverse waves, because of the Meissner effect, no 
electromagnetic fields, in the sense of Pippard's fields, 
will be set up, and that attenuation will be produced by 
scattering processes only. For longitudinal waves it will 
be assumed that potential gradients will be set up which 
are produced by the density gradients which accompany 
a dilatational wave. Again, any electric fields that are 
produced by possible space charges, as postulated by 
Pippard for the normal state, will be neglected. Their 
effect will turn out to be negligible even in the normal 
state. With these assumptions and using Boltzmann's 
transport equation and the Bardeen, Cooper, and 
Schrieffer6 (BCS) distribution function for the super
conducting state, one may compute the rate of transfer 
of energy from the superconducting electrons to the 
lattice. This is equal to the rate-of-energy absorption by 
the electrons from the ultrasonic waves, and, therefore, 
yields the attenuation coefficient. 

FIG. 1. Ultrasonic attenuation coefficient of transverse waves in 
the superconducting state for ql<l. The dots are experimental 
points obtained while the temperature of the sample was increased 
in discrete steps and the crosses were obtained while the tempera
ture of the sample was decreased. anL is the total attenuation due 
to electron-phonon interaction that the ultrasonic pulse ex
periences in one round trip while the sample is in the normal state. 
It is a constant throughout this temperature range. The propaga
tion direction is along (110). The solid line is drawn according to 
Eq. (8). These data were obtained from Ref. 5. 

6 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957). 
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TRANSVERSE WAVES 

A method similar to the ones employed by Pippard3 

and Holstein7 will be followed. Let us consider a trans
verse ultrasonic wave propagating in the z direction 
with a velocity v/ and an angular frequency, «. The 
wave vector is then q=<a/vt. All variables associated 
with the wave are multiplied by eiiut~qz) and, therefore, 

d > d d d 

dt dx dy dz 
-tq. 

Since this is a shear wave there is no density change 
associated with the wave. The local particle velocity 
assumed in the y direction will be u. We shall also 
assume an average relaxation time, r. 

In order to take into account the motion of the 
lattice, the collision term in the Boltzmann transport 
equation is modified to 

^1\ 
^ / c o l l 

/ - / -
(1) 

where fu is the electron distribution corresponding to 
an average electron velocity equal to the local lattice 
velocity. The Boltzmann transport equation becomes 

Of df f-fu 
\-vz—\-a g rad v /= , 

dt dz r 

where vz is the z component of the electron velocity v 
and a is its acceleration which we assume to be zero 
since we have postulated that there are no electro-
magentic fields present due to the Meissner effect. 
Therefore, 

ef df f-U 
\~v8—= . (2) 

dt dz T 

The distribution function for the superconducting state 
is given by6 

/o= 1/(**'**+1), (3) 

where E=[e 2 +€o 2 ( r ) ] 1 / 2 , e is the energy of the normal 
Bloch wave referred to the Fermi level EF and 2eo{T) 
is the energy gap. The equilibrium value of E in the 
disturbed metal is given by 

Expanding fn about its equilibrium value in the un
disturbed metal /o, one obtains 

/ » = / » -
mvu sin# cos<£ dfo 

Zl+ef(T)/<?Jf*dE' 

where 6 is the angle between the electron velocity and 
the propagation direction, and <j> is the azimuthal angle, 
measured from the polarization direction. 

7 T . Holstein, Phys. Rev. 113, 479 (1959). 

Since one assumes that the disturbance of the dis
tribution function is small, one may define / = / o + ^ . 

From Eq. (2) one obtains 

mvu sin0 cost/> dfo 

Zl+iwT-iqvT cos0][l+€O
2(:r)/e2]1/2 dE' 

After neglecting terms in8 cor 

fdf\ iqmv2ru sin# cos<9 cos<£ dfo 

( - ) -
\ dt/ Coii \ 

r{\-iqvr cos^][l + e0
2(r)/e2]1/2 dE 

The rate of heat production due to collisions is given by9 

J \ \ dt/mii/ 
(4) 

where the average is to be taken per cycle. 
If one assumes phonon drag7 then the Hamiltonian 

is given by 

H=^m(v—u)2=\miyt-— 2vu sin0 cos0+^ 2 ) . 

Therefore, 

/

so .7T 2̂TT mifiu2 sms6 cos26 cos20 

\ J o 2 r p 2 + c o s 2 ^ ] [ l + € 0
2 ( r ) / e 2 ] 1 / 2 

dfo dcf)ddde 
X -

where 

and 

dE {¥/2mz) 

b=-
qvr 

dv=-
m (¥/2mz) 

Approximating ~Ef by — oo, observing that the re
sulting integral is even in e, and that v is positive, and 
integrating with respect to 6 and <j> one obtains 

2irmu2 r00 dfo 
Q= / »8[f+b2+ (b+b*) tan-1 (1 /6)]—dE , 

r(¥/2m")Jeo(T) dE 

which yields 

Q= 
3 / 1 

r L 2(^/)2 2\ql (ql) 

1 
tan lql :/o(co), 

where N is the density of electrons in the normal state, 
vo is the Fermi velocity, and 1=VOT. 

Since the ultrasonic attenuation coefficient is given 
by 

a=2Q/pv'u2, 
8 One may neglect terms in or since the electrons that will be 

involved in the electron phonon process are close to the Fermi 
level and in this case cor = (vf/vo)ql, where ^0 is the Fermi velocity, 
which is usually about 300 times larger than the sound velocity. 

9 E. I. Blount, Phys. Rev. 114, 418 (1959). 
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where p is the density, one obtains for transverse waves 

a.t= (2m^A/pr )Cl -g] /o (eo) , (5) 

where the subscript t refers to transverse waves, and 

2(ql)'' r(-+-) 
l\ql (qlf) 

tan - 1^— 1 

Finally, for ql<l, 

ast=(.2mN/5v/pr)(qiyf0(eo). (6) 

For the normal metal e 0=0 and /o(€o) = 2> therefore one 
obtains 

ant^(mN/5v/pr)(ql)\ (7) 

This result agrees with Pippard's result for ql<l. The 
ratio of the ultrasonic attenuation in the two states is 
therefore given by 

ast/ant^2f0(eo) = 2/(e^kT+l). (8) 

The solid curve in Fig. 1 is plotted according to Eq. (8) 
using the BCS temperature dependence of the energy 
gap. I t is plotted for a zero-temperature energy gap, 
2e0(0), of 3.SkTc. 

Since neglecting the electromagnetic fields still gives 
the proper value for the attenuation coefficient in the 
normal state, one may conclude that its effect is negli
gible for ql<\. I t is probable that it has a noticeable 
effect on the total ultrasonic attenuation in the normal 
state only when ql> 1. In this instance one might expect 
that in the superconducting state the screening due to 
the Meissner effect would inhibit that part of the at
tenuation which would be produced mainly by the mag
netic fields. Assuming this to be the case, one may find 
the magnitude of the drop near Tc for ql>l by sub
tracting the value we have obtained for the whole 
range, neglecting the electromagnetic fields, Eq. (5), 
from that value obtained by Pippard for the attenuation 
in the normal state, 

dnt = 
1—g Nm 

g pVtT 

thus, we would obtain for the drop A a = [ ( l — g)2/g] 
X (Nm/pv/r), This is the result obtained by Morse and 
Claiborne using the Boltzmann equation and the 
London equation. They felt that since the region of 
interest for the attenuation drop is very close to Tc, the 
superconducting behavior could be reasonably ac
counted for by use of the London equation. Their meas
urements in aluminum for 0 .8<#/<4.0 verify this re
lationship. The ratio of the residual attenuation in the 
superconducting state to the attenuation in the normal 
state is 

<x8t/<Xnt:=2gfo(eo). 

The ratio of the drop to the attenuation in the normal 
state is given by 1-—g, this is proportional to the fre

quency squared for small values of ql and approaches 
unity for large values of ql. This is consistent with 
Tsuneto's calculations for ql^>l which indicate that the 
attenuation of transverse waves should drop to a very 
small value near Tc. For qiy>l the residual attenuation 
according to Eq. (5) becomes independent of the fre
quency. This result should not be too surprising, since 
Pippard finds that this condition occurs in the normal 
state when the electromagnetic fields fall to a low value. 
However, in the normal state this happens when the 
skin depth becomes larger than the wavelength or when 
cor becomes much larger than unity, while in the super
conducting state it has already occurred when qV5>\. 

LONGITUDINAL WAVES 

For longitudinal waves the Boltzmann transport 
equation becomes 

h vz Va g rad v /= , (9) 
dt dz T 

where /„,„ is the distribution function for the electrons 
having an average velocity u in the z direction and 
undergoing a small density change, n. 

The acceleration produced by the density gradients 
may be computed as follows: 

1 6EF iqvo2n 
a= = cos# 

m dz 3N 
and 

/u,n—/o 
mvu cos0— (mnvo2/3N) d/0 

[i+6o2(r)A2]I/2 OE' 

Again let / = fo+4/ and, since \f/ is small, gradyi/' may 
be neglected and one obtains for \p from Eq. (9) 

f= 
-mvu cos#-f (tnnvo2/3N)(l — iqvT cos0) Sf0 

[l+icor~-f:^TCOS^][l+e0
2(T)/€2]1/2 SE ' 

F'rom the continuity equation we know that the electron 
current density is —env/, and since there are no space 
charges set up it must cancel the lattice current density, 
eNu. Therefore, n=Nu/v/, the subscript / refers to 
longitudinal waves. 

After neglecting terms in cor, we have 

/df\ iw, 

\dt/con r[b~ 

ium[y cos20— (voz/3v)~] dfo 

coii r[6~^cos^][l+6o2(T)/62]1 /2 dE 

Now the rate of heat dissipation may be computed 
according to Eq. (4). After integrating with respect to 
6 and <f> and neglecting higher order terms 

0= 
4TU2M r00 

r{W/2rn*)J\Q(T) 

f ( 
I fl2(t77^r)2( • 

J tn(T) \ 

'A2 v0
2\dfo 

-)—dE, 
9/dE 
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which gives 
Au2mN 

15r 
and, finally, 

SmN 
asz= (gOl/oOo). 

For the normal state, 

ot»i= (ql)2. 
\5pVlT 

This attenuation agrees with Pippard's result for longi
tudinal waves for ql< 1. Again the ratio is given by 

asi/ani = 2fo(eo). 

Tsuneto has obtained the same result by using a matrix 
density formalism and assuming that the interaction 

I. INTRODUCTION 

IN a series of papers that are as much as twenty years 
old, I. M. Lifshitz formally solved the dynamics of 

a crystal perturbed by a defect.1-4 He assumed that the 
normal modes and frequencies were known for the 
unperturbed lattice, and by the use of the dynamic 
Green Vfunction matrix was able to reduce the number 
of degrees of freedom of the perturbed problem to a 

* Work supported in part by the U. S. Atomic Energy 
Commission. 

*I. M. Lifshitz, J. Phys. U.S.S.R. 7, 211, 249 (1943); 8, 89 
(1944). 

2 1 . M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 17, 1017 and 1076 
(1947). 

s I. M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 18, 293 (1948). 
4 1 . M. Lifshitz, Suppl. Nuovo Cimento 3, 716 (1956). This 

English review article contains more references than those given 
above. 

between long-wavelength sound waves and electrons in 
a metal is mainly electromagnetic. A similar result was 
obtained by BCS for longitudinal waves for ql>l by 
computing the net rate of absorption of energy in the 
superconducting state produced by direct absorption 
and induced emission of the imposed acoustic phonons. 
Since our result for the attenuation coefficient of longi
tudinal waves is similar to that obtained by Pippard, 
we may assume that the effect of the space charges may 
be neglected even in the normal state for ql<l. How
ever, when ql>l, the above derivation which neglects 
space charges would not give the correct limit for an. 
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manageable size, essentially equal to the number of 
changes induced by the perturbation. 

Subsequent work has been devoted mainly to one 
aspect of the perturbed problem, namely, the appearance 
of discrete frequencies belonging to lattice modes 
localized around the impurity.5-7 The Green's-function 
matrix method may be readily applied to the electron 
impurity problem if Wannier functions are used, as 
shown by Koster and Slater.8-9 In this case, the local 
modes correspond to bound electronic impurity states. 

Lifshitz also discussed the problem of the remaining 
modes which still have running wave character.3,4 As 

5 M. Lax, Phys. Rev. 94, 1392 (1954). 
6 E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955). 
7 A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H. 

Weiss, Rev. Mod. Phys. 30, 175 (1959). 
8 G. ]. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954). 
9 G. J. Koster, Phys, Rev. 95, 1436 (1954). 
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The Green's-function matrix method first developed by I. M. Lifshitz is applied to the problem of the 
scattering of phonons by a localized perturbation in the lattice. The scattering can be described by a t matrix 
that is localized to the same extent as the perturbation and has similar symmetry properties. The t matrix 
can be written in terms of the perturbation matrix y and the Green's-function matrix g, perhaps most easily 
in terms of the representation formed by the eigenvectors of the matrix gy, y; these vectors can often be found 
by symmetry considerations. Two cases are of particular interest: (1) a "singular" perturbation which 
leads to a t matrix independent of the strength of the perturbation, and (2) resonance scattering from a 
low-frequency virtual local mode. The latter case is discussed for the example of decreased central-force 
constants between (100) nearest neighbors and the impurity site. Some implications for thermal conduc
tivity are mentioned. 
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